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Calculating accurate forces within variational and diffusion Monte Carlo �VMC and DMC� methods is a
very challenging problem. We derive expressions for the contribution to the Hellmann-Feynman force from
nonlocal pseudopotentials for use within the VMC and DMC methods. Equilibrium bond lengths and harmonic
vibrational frequencies are calculated from the Hellmann-Feynman forces and compared with those obtained
from the energies at the Hartree-Fock, VMC, and pure DMC levels. Results for five small molecules show that
the equilibrium bond lengths obtained from the force and energy calculations differ by less than 0.007 Å at the
DMC level.
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I. INTRODUCTION

Quantum Monte Carlo �QMC� methods �1� are used to
calculate ground-state total energies of many-particle sys-
tems. For atoms, molecules, and solids, the calculated ener-
gies are comparable to, and often more accurate than, those
obtained from density functional theory �DFT� or conven-
tional quantum chemistry methods. To date, QMC calcula-
tions have normally used geometries obtained from other
theoretical methods or from experiment. It would be more
consistent to use geometries calculated within the QMC
simulation, which are most conveniently obtained from
atomic forces. It has, however, proved difficult to develop
accurate and efficient methods for calculating atomic forces
within the QMC method.

Let us recall how interatomic forces may be calculated in
conventional electronic structure methods. The force on an
atom is the negative of the gradient of the energy with re-
spect to the atomic position. The Hellmann-Feynman theo-
rem �HFT� �2,3� states that the gradient of the energy is the
expectation value of the gradient of the Hamiltonian; terms
involving the gradient of the wave function do not contrib-
ute. The HFT holds when the wave function is an exact
eigenstate of the Hamiltonian. Within single-particle meth-
ods, such as DFT or Hartree-Fock �HF� theory, the orbitals
are normally expanded in basis sets, and the HFT holds if the
basis set is complete. The HFT also holds when the basis
functions are independent of the nuclear positions, as in the
case of plane waves. The HFT does not hold when an atom-
centered basis set such as a Gaussian is used and the “Pulay”
error terms contain gradients of the orbitals with respect to
the nuclear positions �4,5�.

The role of the HFT within variational Monte Carlo
�VMC� calculations is similar to that in conventional elec-
tronic structure methods. In VMC one chooses a trial many-
body wave function �T which contains parameters whose
optimal values depend on the atomic positions. The energy is
evaluated as the expectation value of the Hamiltonian with
�T, and the HFT holds if two conditions apply. First, the
values of all variable parameters must be chosen to minimize
the energy. Second, the functional form of �T must be cho-
sen such that it depends only implicitly on the nuclear posi-
tions, or, alternatively, the atomic basis centers are consid-

ered as variational parameters as well �6�. However, in
practice both conditions are generally not satisfied. It is more
convenient to choose forms of �T that have explicit depen-
dence on the nuclear positions. Also, the parameter values
are usually obtained by stochastic methods and are therefore
subject to statistical noise. In addition, the parameter values
are sometimes obtained by minimizing the variance of the
energy rather than the energy itself, although one normally
assumes that the parameter values are similar. However, as a
result of violating these two conditions, the HFT does not in
practice hold within the VMC method, and Pulay terms must
be included to obtain the correct total derivative of the en-
ergy. Evaluating the Pulay terms, in turn, demands the con-
struction, optimization, and evaluation of trial functions for
each required gradient.

Some additional issues arise when considering the HFT
within the diffusion Monte Carlo �DMC� method. In this
method, the imaginary-time Schrödinger equation is used to
evolve a set of configurations toward the ground-state distri-
bution. Fermionic symmetry is maintained by the fixed-node
approximation �7�, in which the nodal surface of the DMC
wave function � is constrained to equal that of �T. The
DMC algorithm generates the “mixed” distribution �T�.
Taking the gradient of the mixed estimator for the fixed-node
DMC energy leads to Pulay-like terms, and the estimate of
the force is unbiased only when these terms are included.
The additional terms include gradients of � with respect to
the nuclear positions, which cannot be evaluated straightfor-
wardly. Reynolds et al. �8,9� replaced these terms by similar
ones involving the gradient of �T, obtaining a scheme
which, although approximate, should give good results if �T
is accurate enough. They applied their scheme to the H2
molecule.

One may also generate the “pure” DMC distribution ��
using, for example, the reptation Monte Carlo method �10�,
the future walking method �11�, or the approximate extrapo-
lated estimation method �12�. The HFT force calculated with
the pure distribution is not, in general, equal to the negative
of the exact DMC energy gradient. If the nodal surface of �T
is approximate, the pure distribution is also approximate and
the HFT does not in general hold. Huang et al. �13� showed
that the gradient of the fixed-node DMC energy evaluated
with the pure DMC distribution contains an additional
“nodal term” beyond the HFT force, which is zero when the
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nodal surface of �T is exact, and Schautz and Flad �14� gave
an explicit expression for this nodal term. Nevertheless, the
nodal term is expected to be small in many practical appli-
cations, an assumption that can be tested by comparing HFT
forces with direct evaluation of the DMC energy at different
geometries.

A problem common to the evaluation of forces within
both VMC and DMC methods is that the variance of the
HFT force is infinite when the bare Coulomb potential is
used for the electron-nucleus interaction. This problem was
addressed by Assaraf and Caffarel �15,16�, who added a term
to the HFT force which has zero mean value but greatly
reduces the variance of the estimator. It is worth noting that
Reynolds et al. �9� had included a similar term in their earlier
calculation of DMC forces. Alternatively, one can use the
filtering method of Chiesa et al. �17�. A different route to
forces within the QMC method is provided by finite-
difference energy calculations �12�. This has been developed
within correlated sampling VMC and DMC techniques �18�
as well as the reptation Monte Carlo method �19�.

The cost of DMC calculations for an all-electron atom of
atomic number Z scales roughly as Z5.5 �20,21�, which makes
applications to heavy atoms prohibitively expensive. Pseudo-
potentials are therefore normally used for heavy atoms, re-
moving the chemically inert core electrons and their rapid
spatial variations from the problem. It is advantageous to use
pseudopotentials that are smooth at the origin, such as the
HF pseudopotentials of Refs. �22,23�, which eliminate the
problem of the infinite variance of the HFT estimator.
Pseudopotentials do, however, introduce an additional com-
plexity, the evaluation of the gradient of the nonlocal pseudo-
potential operator with respect to the nuclear position. In this
paper, we derive the relevant expressions for the gradient of
the nonlocal pseudopotential operator.

We investigate the accuracy of the HFT forces for the H2,
LiH, SiH, SiH4, and GeH molecules within the HF, VMC,
and DMC methods. Bond lengths and harmonic vibrational
frequencies calculated using the HFT are compared with val-
ues obtained from energy calculations. These results are used
to demonstrate the validity of our expressions for the nonlo-
cal contributions to the HFT forces, and to investigate the
accuracy of the HFT forces in the QMC method.

This paper is organized as follows. In Sec. II we develop
the theory of HFT forces in pseudopotential QMC calcula-
tions, and sketch the derivation of the expressions for the
nonlocal contribution to the HFT forces, which are given in
the Appendix. In Sec. III we describe our QMC calculations
and in Sec. IV we report tests of the evaluation of our HFT
expressions. In Sec. V we present and discuss the molecular
bond lengths and vibrational frequencies obtained, and we
draw our conclusions in Sec. VI.

II. HFT FORCES IN THE QMC METHOD

We write the valence Hamiltonian as

Ĥ = Hloc + Ŵ , �1�

where Ŵ is the nonlocal pseudopotential operator and Hloc
comprises the kinetic energy, the Coulomb interaction be-

tween the electrons and the local pseudopotential,

Hloc = −
1

2�
i

�i
2 + �

i�j

1

rij
+ �

i,�
Vloc�ri�� , �2�

where i and j denote electrons, and � labels pseudoions.
Unfortunately, it is not straightforward to evaluate the action

of Ŵ on the DMC wave function. In this work we use two
different pseudopotential localization schemes. Within the
first scheme �24,25�, the nonlocal pseudopotential of the
Hamiltonian in Eq. �1� is replaced by an effective local
potential,

ĤA = Hloc +
Ŵ�T

�T
, �3�

where �T is the trial wave function. In the second localiza-
tion scheme, recently proposed by Casula �26�, the Hamil-
tonian of Eq. �1� is written in the form

ĤB = Hloc +
Ŵ+�T

�T
+ Ŵ−, �4�

where the nonlocal pseudopotential operator Ŵ+ corresponds

to all positive matrix elements �R�Ŵ�R��, and Ŵ− to all nega-
tive matrix elements �26�. We will refer to Eq. �3� as the full
pseudopotential localization approximation �FPLA� and to

Eq. �4� as the semi-PLA �SPLA�. Within the SPLA, Ŵ+ is

localized by acting it on �T, while the action of Ŵ− is incor-
porated into the diffusion process �26�, so that localization of

Ŵ− is not required. Note that the identity ĤA�T= ĤB�T

holds, so that the local energies �T
−1ĤA�T and �T

−1ĤB�T are
identical.

The pure estimate of the Hellmann-Feynman force �2,3�
within the FPLA is

FA
HFT = −

��A��RĤA��A�
��A��A�

= −

��A��R�
i,�

Vloc + �R��T
−1Ŵ�T���A�

��A��A�
, �5�

where �R is the gradient with respect to the nuclear coordi-

nates R. The Ŵ term in Eq. �5� can be written as

�R	 Ŵ�T

�T

 =

��RŴ��T

�T
+

Ŵ��R�T�
�T

−
�Ŵ�T�

�T

��R�T�
�T

.

�6�

The expression equivalent to Eq. �5� within the VMC
method is obtained by replacing �A by �T. The expectation
value of the sum of the last two terms in Eq. �6� is zero
within the VMC method, but is nonzero within the DMC
calculation unless �T is exact. In practice, the expectation
value of the sum of these terms is expected to be small
within the DMC method and, because they contain gradients
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of the wave function, we classify them as additional Pulay
terms. These terms have been neglected in this work and we
use

FA
HFT � −

��A��R�
i,�

Vloc + �T
−1��RŴ��T��A�

��A��A�
. �7�

The effective local potential within the FPLA can be writ-
ten as

Ŵ�T

�T
= �

l,i,�

2l + 1

4�
vl�ri��

�� d�i�� Pl��i�� �
��r1, . . . ,ri�, . . . ,rN�
��r1, . . . ,ri, . . . ,rN�

, �8�

where vl is a radial pseudopotential for angular momentum l,
Pl is a Legendre polynomial, and � denotes the correspond-
ing angular variable. The angular integral in Eq. �8� is evalu-
ated by quadrature on the surface of the sphere of radius ri�.

We now derive an explicit expression for the contribution

of Ŵ to the HFT force of Eq. �7�. To calculate the force on an
atom placed at the origin, we consider an infinitesimal dis-
placement �= �x ,0 ,0� of it, so that the contribution to the x
component of the HFT force is given by

 dŴ

dx


x=0
�T�0� = lim

x→0

�Ŵ�x� − Ŵ�0���T�0�
x

, �9�

where �T�0� is the trial wave function at zero displacement,
i.e., �= �0,0 ,0�. Consider the effect of the one-electron non-

local operator Ŵ on the ith electron at position ri. From Eq.
�8� we can see that, when �= �0,0 ,0�, the integration is over
a sphere of radius �ri� centered at the origin. After the dis-
placement it is over a sphere of radius �ri−�� centered at
�= �x ,0 ,0�. In practice the integral is approximated by a
sum over a set of points on the surface of the integration
sphere. Hence, to calculate the gradient in Eq. �9�, we need
to consider the appropriate transformation of each point of
the integration grid so that the original grid points at riuk are
transformed to the points �+ �ri−��uk, where k labels the
grid points. This transformation is illustrated in two dimen-
sions in Fig. 1.

We can now obtain the required expressions by Taylor-

expanding �Ŵ���−Ŵ�0���T�0� to first order in �. The re-
sulting expressions for the contribution to the force from
angular momentum channels l=0,1 ,2 ,3 are given in the Ap-
pendix. It is noteworthy that the nonlocal HFT force compo-
nents for the different angular momentum channels depend
on the gradient of the wave function with respect to the elec-
tron coordinates �but not the gradient with respect to the
atomic position�. Although this dependency may seem sur-
prising at first, it can be interpreted geometrically as arising
from the change in the region of the nonlocal integration
when an atom is displaced, with the wave function held con-
stant.

The analog of Eq. �5� within the SPLA is

FB
HFT = −

��B��RĤB��B�
��B��B�

= −

��B��R�
i,�

Vloc + �R��T
−1Ŵ+�T� + �RŴ−��B�

��B��B�
.

�10�

As in the FPLA, we classify the terms in Eq. �10� involving
�R�T as additional Pulay terms. Since these terms have zero
mean within the VMC method, their contribution within the
DMC method is assumed to be small and we neglect them.
Although the pure estimate in Eq. �5� can be evaluated
straightforwardly within the FPLA, a complication arises

when using the SPLA, where the nonlocal operator �RŴ−

acts on the unknown DMC ground-state wave function. We
have dealt with this complication by introducing an addi-
tional localization approximation when calculating forces
within the SPLA,

��RŴ−��B

�B
�

��RŴ−��T

�T
. �11�

III. QMC CALCULATIONS

We use trial wave functions of the standard single-
determinant Slater-Jastrow form. The orbitals forming the
Slater determinants are obtained from HF calculations using
the CRYSTAL98 �27� and GAMESS-US �28� codes with atomic-
centered Gaussian basis sets. For all pseudopotential calcu-
lations, the basis set is of sextuple-	 quality �without f and g
functions but with four additional diffuse p and d functions�.
For the all-electron HF calculations, we use standard basis
sets of sextuple-	 quality from Ref. �29�.

We use Jastrow factors consisting of electron-electron,
electron-nucleus, and electron-electron-nucleus terms, which
are expanded in natural power series. �30� The wave function
for H2 has 87 variable parameters, while those for molecules
containing two atomic species have 157. All of the param-
eters in the Jastrow factors are optimized by first minimizing
the variance of the local energy �31� and subsequently by
minimizing the energy itself. �32,33�

r u 4
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FIG. 1. Illustration of the coordinate transformation of the non-
local pseudopotential integration grid when displacing an atom cen-
tered at the origin �center of the small circle� by the vector � �cen-
ter of the large circle�. The electron is at ri. The integration grid at
zero displacement consists of four points riu1, etc., which are trans-
formed by the atomic displacement to �+ �ri−��u1, etc.
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We use the Dirac-Fock averaged relativistic effective
pseudopotentials �AREP� of Refs. �22,23�, which can be ob-
tained online. �48� Each pseudopotential contains s, p, and d
nonlocal channels. In all calculations, except those reported
in Sec. IV, we have chosen the local component of the
pseudopotential to be equal to the radial part of the d pseudo-
potential. The radial components of the pseudopotentials are
represented on grids within the QMC calculations, and their
derivatives are evaluated numerically using an extended
form of Neville’s algorithm. �34� All QMC calculations are
performed using the CASINO code. �35�

DMC calculations suffer from systematic errors arising
from the short-time approximation to the Green’s function,
which we have carefully investigated for each system stud-
ied. We find that the forces calculated with time steps of
0.01, 0.05, and 0.003 a.u. are within one statistical error bar
of 0.001 a.u. Therefore, to avoid repeated extrapolation to
zero time step for different bond lengths, we use a time step
of 0.003 a.u. for all of our DMC calculations and we do not
perform any further extrapolation.

As the HFT operator does not commute with the Hamil-
tonian, the mixed estimator is biased and the pure estimate
gives more accurate results. We calculate pure estimates us-
ing the future walking method. �11� We also calculate pure
expectation values using the extrapolated estimation tech-
nique, i.e., 2� �mixed DMC�-VMC. �12� In all our calcula-
tions, we find that the extrapolated pure estimates and the
future walking pure estimates are in very good agreement.
We therefore only report future walking estimates of the pure
DMC HFT forces.

Figure 2 summarizes information about the calculations
for SiH. The upper graph shows forces evaluated at the Si
atom; the lower graph gives the same information for the H
atom. As can be seen, the pure DMC estimates are in excel-
lent agreement with the extrapolated estimations for all bond
lengths. On the left, the HFT forces are plotted as a function
of the future walking projection time, where the mixed DMC
estimate corresponds to the future walking one at zero pro-
jection time. Although the future walking estimate is exact
only for an infinite future walking projection time, we found
a projection time of 10 a.u. to be sufficient in our calcula-
tions. No significant changes in the estimates were found
when using longer projection times. The agreement between
the HFT forces obtained from the future walking and ex-
trapolated estimates gives further confidence that our future
walking results are well converged.

All of the molecules we have studied consist of H atoms
and one heavier atom. It is therefore possible to obtain equi-
librium bond lengths and vibrational frequencies from the
forces on the H atoms alone. This approach does not, how-
ever, directly test the forces on the heavier atoms, where the
nonlocality of the pseudopotentials plays a very important
role. For all the diatomic molecules, we therefore report
bond lengths and vibrational frequencies obtained from using
the zero force condition on the H atoms and on the heavier
atoms. For SiH4, the calculated force on the Si atom should
be zero by symmetry, and at each level of theory it satisfies
this condition to within a statistical error bar of 0.001 a.u. or
less. Also, the symmetries of the H2 and SiH4 molecules
imply that the forces on each H atom should have the same

magnitude. We found that in each case the forces obey this
symmetry to within statistical errors, and we therefore aver-
age the symmetry-related components to further reduce the
statistical error bars.

To obtain the equilibrium bond lengths, we calculate the
HFT forces at 0%, ±1%, and ±2% around the experimental
ones, we fit the HFT forces to a quadratic form, and locate
the zero-force bond length. In each case the quality of the fit
is good and is not significantly changed by using a quartic
form. We also calculate the equilibrium bond lengths from
the minima in the HF, VMC, and DMC potential energy
curves by fitting the energies to cubic polynomials.

FIG. 2. �Color online� Upper right graph: HFT forces in a.u. on
the Si atom in the SiH molecule as calculated within the VMC,
mixed DMC, and future walking pure DMC methods for five dif-
ferent bond lengths. Upper left graph: Future walking pure DMC
forces plotted against the future walking projection time between
0.5 and 10 a.u. The mixed DMC forces correspond to the zero
future walking projection time and the VMC forces are plotted at
−0.5 a.u. to guide the reader. Lower graphs: same as the upper ones
with the forces now evaluated on the H atom.
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IV. A TEST OF THE EVALUATION OF THE NONLOCAL
FORCES

As a test of the correctness of our formulas for the HFT
force estimator and our implementation of them, we con-
struct three different estimators by choosing either the s, p,
or d angular momentum channels to be local. The three es-
timates can be obtained from a single HFVMC calculation
�the VMC calculation using the determinant part of the wave
function only, which should therefore reproduce the HF re-
sults within statistical error bars�, a VMC calculation includ-
ing Jastrow factors, and a DMC calculation. The estimates
are therefore obtained using correlated sampling, so that the
differences between the values obtained by each particular
method are much more accurate than the individual values.
In Table I we give the total HFT forces at each level of
theory for SiH evaluated on both atoms.

For the forces evaluated on the H atom, we find the esti-
mates with different local channels to be almost the same at
each level of theory. This is expected because changing the
local component of the potential felt by f and higher-angular-
momentum wave function components will have very little
effect on the H atom. The differences between the forces on

the Si atom with different local potentials are considerably
larger, but the total forces are small in all cases, which is
expected because the calculations are performed at the ex-
perimental equilibrium bond length. These results also sug-
gest that contributions by the HFT forces from the angular
momenta greater than d are not necessary for these systems.

V. RESULTS AND DISCUSSION

A. Definitions

We define the Pulay errors in quantities such as the bond
lengths and vibrational frequencies as the differences be-
tween the values obtained from the forces and from the
energies,


xmethod
Pulay = xmethod

HFT − xmethod
E , �12�

where x can either be the bond length a or the vibrational
frequency �, and the method can be HFVMC, VMC, or
DMC. In the HFVMC and VMC calculations, the error term

x arises purely from the Pulay terms that are omitted in our
calculations. In the DMC method, this error term has two
contributions: first, the Pulay terms, which reduce to a nodal
error term within pure DMC �13,14�, and second, the terms
arising from the pseudopotential localization procedure
which involve �R�T. In the VMC method, such gradient
terms have zero mean and therefore do not contribute to the
error.

The accuracy of a Jastrow factor can be measured by the
percentage of the DMC correlation energy retrieved within
the VMC method, i.e.,

EC =
EHF-EVMC

EHF-EDMC
� 100 % , �13�

where EHF, EVMC, and EDMC are the HF, VMC, and DMC
energies. A perfect Jastrow factor would yield 100% of the
DMC correlation energy.

B. Bond lengths

Table II presents equilibrium bond lengths calculated
within the HF and HFVMC methods. The excellent agree-
ment between the all-electron and pseudopotential HF bond

TABLE I. Forces �a.u.� on the H and Si atoms of the molecule
SiH at the experimental equilibrium bond length. HFVMC, VMC,
and pure DMC forces are shown, for estimators where either the s,
p, or d angular momentum channel is chosen as local.

Local
channel FA

HFT on H atom FA
HFT on Si atom

HFVMC s −0.00256330�17995� 0.00355527�10006�
p −0.00256327�17995� 0.003467232�9982�
d −0.00256325�17995� 0.002518533�9945�

VMC s −0.00561230�12888� 0.01277395�16857�
p −0.00561228�12888� 0.01286839�16822�
d −0.00561227�12887� 0.01296538�16752�

DMC s 0.00025314�42964� 0.00153481�44006�
p 0.00025312�42964� 0.00172872�44006�
d 0.00025310�42964� 0.00193854�44006�

TABLE II. Equilibrium bond lengths and Pulay error terms �Å�, calculated using the HF and HFVMC
methods. For the latter method, results are stated for each atom in the diatomic molecules where �1� indicates
the H atom and �2� the heavier atom. The Pulay error 
aHFVMC

Pulay is defined in Eq. �12�. All-electron calcula-
tions are denoted by �all�, while all other theoretical data are for pseudopotential �pp� calculations. The
superscripts E and HFT denote bond lengths obtained from the potential energy curve �E� and from the HFT
forces �HFT�. Experimental values �expt� are taken from Ref. �29� except for GeH which is taken from Ref.
�36�.

aexpt aHF�all�
E aHF�pp�

E aHFVMC
HFT �1� aHFVMC

HFT �2� 
aHFVMC
Pulay �1� 
aHFVMC

Pulay �2�

H2 0.741 0.7335 0.7334 0.7335�1� 0.0001�1�
LiH 1.5957 1.6061 1.6031 1.6034�4� 1.6039�4� 0.0003�4� 0.0008�4�
SiH 1.520 1.5131 1.5114 1.5124�7� 1.5122�7� −0.0010�7� 0.0008�7�
SiH4 1.480 1.4759 1.4711 1.4720�5� 0.0009�5�
GeH 1.589 1.5862 1.5858 1.5863�5� 1.5835�5� 0.0005�5� −0.0023�5�
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lengths, aHF�all�
E and aHF�pp�

E , indicates the high quality of the
pseudopotentials �22,23�. At the HFVMC level, the HFT
holds if the basis set is complete. In our calculations, the
bond lengths derived from the energies, aHF�pp�

E , and the HFT
estimators evaluated on each atom, aHFVMC

HFT �1� and
aHFVMC

HFT �2�, agree within twice the statistical error of around
0.0005 Å, with the exception of GeH, where the deviation in
the bond length derived from the energies and HFT forces on
the Ge atom is 
aHFT

Pulay=−0.0023�5� Å. This high level of
agreement provides further evidence for the correctness of
our nonlocal force formulas and their implementation. The
small differences between the bond lengths calculated from
the HFVMC energies and forces arises from the neglected
Pulay forces. The small size of the Pulay forces suggests that
the Gaussian basis sets are very nearly complete for our mol-
ecules, with the exception of the Ge atom in GeH, where the
basis set quality is slightly inferior. A small contribution to
these differences might also arise from the use of Gaussian
parametrizations of the pseudopotentials in our HF calcula-
tions as opposed to the grid representations in the QMC cal-
culations.

Table III presents equilibrium bond lengths calculated
within the VMC and DMC methods. At the VMC level, add-
ing a Jastrow factor generally does not improve upon the
equilibrium bond lengths obtained from HF forces. Our Ja-
strow factors retrieve well over 90% of the DMC correlation
energy EC in Table IV, which would normally be taken to
imply that the Jastrow factors are of high quality, but it ap-
pears that even higher quality is necessary to obtain accurate
forces within the VMC method. We find a clear correlation

between the VMC Pulay errors in Table III and the quality of
the wave function as measured by the percentages of the
DMC correlation energies retrieved as stated in Table IV.

The DMC results reported in Table III were obtained with
the FPLA. In each case, we find that the bond lengths ob-
tained from the forces on the H atoms agree very well with
those from the energies. This is reflected in the DMC Pulay
terms 
aDMC

Pulay�1� listed in Table III, which are smaller than
two statistical error bars. The Pulay terms are largest in GeH,
where 
aDMC

Pulay�1�=0.0029�16� Å. The bond lengths obtained
from the forces on the heavier atoms are in slightly poorer
agreement with the energy data than for the forces on the H
atoms, and the corresponding Pulay errors are equal to or
smaller than four times their statistical error bars. The largest
deviation is found for GeH with 
aDMC

Pulay�2�=−0.0074�17� Å
and the smallest for LiH with 
DMC

Pulay�2�=−0.0030�12� Å. Our
data therefore suggest that the neglected gradient and nodal
terms in our DMC HFT estimates must be very small for the
lighter atoms �H and Li�, where the wave functions can be
assumed to be very accurate. For the heavier atoms �Si and
Ge�, these neglected terms are larger and lead to small
changes in the DMC force estimates and bond lengths. This
is understandable since the quality of �T is lower for the
molecules with heavier atoms, as shown by the data in Table
IV. It is certainly possible to calculate the Pulay forces cor-
responding to the neglected �R�T terms in Eq. �6�, although
the nodal term �13,14� would still be neglected.

The differences between the DMC bond lengths �from
either the energies or the forces evaluated on either the H or
heavier atoms� and experiment are on the whole somewhat
larger than the differences between the bond lengths from the
DMC energies and forces. The largest differences are found
for GeH with 0.0111�14� Å and SiH4 with 0.0089�17� Å. In
the previous paragraph, we concluded that the neglected
nodal and gradient terms of the DMC HFT estimator are
small for H and Li because the bond lengths from the DMC
energies and forces on the H and Li atoms agree. The devia-
tions of these bond lengths from experiment must largely
come from a combination of the fixed-node approximation,
the FPLA scheme, which slightly alters the pure DMC
ground state distribution, and the pseudopotentials. It is cer-
tainly possible to reduce the fixed-node error by using more
accurate wave function forms, such as multideterminant �37�,
pairing �38,39�, and/or backflow wave functions �40,41�. Un-
fortunately, developing more accurate pseudopotentials for
use in QMC calculations is a difficult task, but including core

TABLE III. Equilibrium bond lengths and Pulay error terms �Å�, calculated within the VMC and DMC methods. Data for each atom in
diatomic molecules are given, where �1� indicates the H atom and �2� the heavier atom. The Pulay errors 
aVMC

Pulay and 
aDMC
Pulay are defined in

Eq. �12�. The superscripts E and HFT denote bond lengths obtained from the potential energy curve �E� and from the HFT forces �HFT�.
Experimental values �expt� are taken from Ref. �29�, except for GeH which is from Ref. �36�.

aexpt aVMC
E aVMC

HFT �1� aVMC
HFT �2� 
aVMC

Pulay�1� 
aVMC
Pulay�2� aDMC

E aDMC
HFT �1� aDMC

HFT �2� 
aDMC
Pulay�1� 
aDMC

Pulay�2�

H2 0.741 0.7394�2� 0.7332�1� −0.0062�2� 0.7413�2� 0.7412�1� −0.0001�2�
LiH 1.5957 1.5952�4� 1.6063�8� 1.5911�8� 0.0111�9� −0.0041�9� 1.6000�3� 1.5995�8� 1.5970�12� −0.0005�8� −0.0030�12�
SiH 1.520 1.5169�3� 1.5029�3� 1.4784�4� −0.0140�4� −0.0385�5� 1.5173�8� 1.5188�12� 1.5111�17� 0.0015�14� −0.0062�19�
SiH4 1.480 1.4736�7� 1.4649�4� −0.0087�8� 1.4739�5� 1.4727�5� −0.0012�7�
GeH 1.589 1.5973�4� 1.5774�3� 1.5620�3� −0.0199�5� −0.0353�5� 1.6030�7� 1.6001�14� 1.5956�16� −0.0029�16� −0.0074�17�

TABLE IV. Total energies �a.u.� within the HF, VMC, and DMC
methods at the equilibrium bond lengths given by the minimum in
the DMC energy. EC is the percentage of the DMC correlation
energy retrieved at the VMC level and is defined in Eq. �13� �its
error bars are smaller than the last stated digit�.

EHF �a.u.� EVMC �a.u.� EDMC �a.u.� EC �%�

H2 −1.13368 −1.173910�5� −1.17439�1� 98.8

LiH −0.75060 −0.78780�1� −0.78811�0� 99.2

SiH −4.26236 −4.369050�6� −4.37698�2� 93.1

SiH4 −6.08890 −6.27142�3� −6.27906�5� 96.0

GeH −4.24388 −4.343760�6� −4.35144�3� 92.9
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polarization potentials �42–44� on the Li, Si, and Ge atoms
might improve the results.

C. Vibrational frequencies

Tables V and VI present harmonic vibrational frequencies
obtained from the forces and energies calculated within the
HF, HFVMC, VMC, and DMC methods. Our conclusions
are similar to those in the discussion of bond lengths. At the
HFVMC level, the frequencies obtained from the forces and
energies agree within or close to one standard error �see
Table V�. This is further evidence that the basis sets are of
high quality. The harmonic frequencies for the molecules
containing Si and Ge atoms are not improved by introducing
correlation at the VMC level. The DMC harmonic frequen-
cies are significantly more accurate than the HF and VMC
ones. The frequencies obtained from the DMC forces and
energies agree within one standard deviation of around
40 cm−1, with the exception of SiH4, where the difference is

�VMC

Pulay�1�=67�43� cm−1. We mentioned earlier that the bond
lengths obtained from the DMC forces and energies are
within four standard errors, but the vibrational frequencies
agree within one standard error.

D. Comparison of the FPLA and SPLA schemes

Here we compare the performance of the FPLA and
SPLA for SiH and GeH. Although the local energies within
the FPLA and SPLA are the same, the schemes generate
slightly different ground-state wave functions, and therefore
the bond lengths and frequencies from the FPLA and SPLA
can differ. In addition, we make slightly different approxima-
tions when calculating the forces. The data for the equilib-
rium bond lengths and vibrational frequencies in Table VII

show that the differences obtained within the FPLA and
SPLA schemes are fairly small.

E. Comparison of DMC results with other methods

Here we briefly compare our DMC results with those ob-
tained from Moller Plesset �MP2� and coupled cluster �CC�
quantum chemistry methods, and Perdew-Burke-Ernzerhof
�PBE� DFT, using standard basis sets. Table VIII shows de-
viations of the bond lengths derived from our pseudopoten-
tial DMC HFT force calculations and various all-electron
reference calculations from experimental data. The average
deviation over all bond lengths is 0.0051�4� Å for our DMC
results �where the average is over all bond lengths calculated
from forces on the H and heavier atoms�, 0.0225 Å for PBE
DFT, 0.0025 Å for MP2, and 0.0056 Å for CC methods.
Table IX reports similar data for vibrational frequencies. The
average deviations from the experimental frequencies are
26�10� cm−1 for our DMC results �where the average is over
all frequencies calculated from forces on the H and heavier
atoms�, 57 cm−1 for PBE DFT, 79 cm−1 for MP2, and
19 cm−1 for CC calculations. These comparisons show that
our �pseudopotential� DMC bond lengths and vibrational fre-
quencies are at least comparable with those obtained from
standard all-electron reference calculations.

For completeness, we summarize results of previous
DMC calculations of forces for small molecules and the
equilibrium bond lengths obtained. As analytic QMC forces
have not previously been calculated with pseudopotentials,
we compare with recent all-electron studies. Assaraf and
Caffarel �16� calculated HFT forces using a variance reduc-
tion scheme, which requires the evaluation of the derivative
of �T and extrapolated estimation to approximate the pure
DMC distribution. They report bond lengths for H2, LiH, and

TABLE V. Harmonic vibrational frequencies and Pulay error terms �cm−1� calculated using the HF and
HFVMC methods. All abbreviations used in this table as well as references to experimental data are the same
as in Table II.

�expt �HF�all�
E �HF�pp�

E �HFVMC
HFT �1� �HFVMC

HFT �2� 
�HFVMC
Pulay �1� 
�HFVMC

Pulay �2�

H2 4401 4580 4621 4608�24� −13�24�
LiH 1406 1488 1419 1425�11� 1424�10� 6�11� 5�11�
SiH 2042 2132 2130 2142�14� 2131�13� 12�14� 1�13�
SiH4 2187 2336 2340 2370�21� 30�21�
GeH 1908±35 1986 1979 1966�13� 1988�12� −13�13� 9�12�

TABLE VI. Harmonic vibrational frequencies and Pulay error terms �cm−1� calculated using the VMC and DMC methods. All abbre-
viations used in this table as well as references for experimental data are the same as in Table II.

�expt �VMC
E �VMC

HFT �1� �VMC
HFT �2� 
�VMC

Pulay�1� 
�VMC
Pulay�2� �DMC

E �DMC
HFT �1� �DMC

HFT �2� 
�DMC
Pulay�1� 
�DMC

Pulay�2�

H2 4401 4394�48� 4478�25� 84�54� 4379�30� 4434�35� 55�46�
LiH 1406 1416�15� 1392�13� 1352�12� −24�20� −64�19� 1395�20� 1424�24� 1398�22� 29�31� 3�31�
SiH 2042 2130�15� 2241�9� 2208�11� 111�17� 78�19� 2077�34� 2034�25� 2055�26� −43�42� −22�43�
SiH4 2187 2166�33� 2405�26� 239�42� 2193�27� 2260�33� 67�43�
GeH 1908±35 1834�11� 2128�50� 2089�52� 294�51� 255�53� 1922�31� 1938�25� 1935�26� 16�39� 13�40�

ACCURATE FORCES IN QUANTUM MONTE CARLO… PHYSICAL REVIEW E 76, 036707 �2007�

036707-7



Li2 with an average deviation from the experimental bond
lengths of 0.007�6� Å. Two other studies combine this vari-
ance reduction approach with an energy minimization
scheme for optimizing �T and include the evaluation of Pu-
lay terms: Casalegno et al. �6� obtain bond lengths from
forces with mixed DMC distributions for H2 and LiH with
deviations from the experimental values of 0.001�1� and
0.005�3� Å, respectively. Using the same method, Lee et al.
�47� present bond lengths for eight diatomic molecules with
an average deviation from experiment of 0.0096�2� Å.
Chiesa et al. �17� calculate pure estimates of the HFT forces
on the H atoms for six molecules using a filtering technique,
obtaining an average deviation from the experimental results
of 0.0021�9� Å.

VI. CONCLUSIONS

We reported expressions for the contribution to the
Hellmann-Feynman force resulting from using nonlocal
pseudopotentials in variational and diffusion Monte Carlo
calculations. The expressions for the components of the HFT
force arising from the nonlocal pseudopotential involve the
gradients of the trial wave function with respect to the elec-
tron positions.

The HFT does not hold exactly in our methods because
we use approximate wave functions. The HFT forces on the
atoms of a molecule do not then sum to zero, but their sum
goes to zero as the trial nodal surface becomes exact. The
DMC energies and HFT forces would be consistent if the
terms from the full pseudopotential localization approxima-
tion involving �R�T were included in Eq. �6�, apart from the
neglect of the nodal term. We could in principle evaluate the
expectation values of these gradient terms but have neglected
them in our work. As the expectation values of these terms
within the VMC method is zero, and we have obtained very

TABLE VII. Equilibrium bond lengths �Å�, vibrational frequencies �cm−1�, and their corresponding Pulay
error terms calculated with the DMC method for SiH and GeH. Two different localization methods �FPLA
and SPLA� are used as indicated in the second column. All other abbreviations used in this table as well as
references for experimental data are the same as in Table II.

Method aexpt aDMC
E aDMC

HFT �1� aDMC
HFT �2� 
aDMC

Pulay�1� 
aDMC
Pulay�2�

SiH FPLA 1.520 1.5173�8� 1.5188�12� 1.5111�17� 0.0015�14� −0.0062�19�
SPLA 1.520 1.5206�9� 1.5190�12� 1.5131�18� −0.0016�15� −0.0075�20�

GeH FPLA 1.589 1.6030�7� 1.6001�14� 1.5956�16� −0.0029�16� −0.0074�17�
SPLA 1.589 1.5968�7� 1.5986�15� 1.5898�17� 0.0018�18� −0.0070�18�

Method �expt �DMC
E �DMC

HFT �1� �DMC
HFT �2� 
�DMC

Pulay�1� 
�DMC
Pulay�2�

SiH FPLA 2042 2077�34� 2034�25� 2055�26� −43�42� −22�43�
SPLA 2042 2012�27� 2039�28� 2065�29� 27�39� 53�40�

GeH FPLA 1908±35 1922�31� 1938�25� 1935�26� 16�39� 13�40�
SPLA 1908±35 1993�30� 1944�32� 1933�33� −49�44� −60�45�

TABLE VIII. Equilibrium bond lengths �Å� obtained from
pseudopotential DMC forces on the H atoms using the FPLA
scheme and various all-electron reference methods. The calculated
data are given as deviations from the experimental bond lengths.
The PBE results are obtained using the augmented correlation con-
sistent polarized valence triple-	 �aug-cc-pVTZ� basis set �45�. The
MP2 results are obtained using the cc-pVTZ basis set, except for
LiH, where the 6-311G** basis set is used �29�. The coupled cluster
�CC� results are obtained with the cc-pVTZ basis and the CC single,
double and triple excitation �CCSD�T�� method �29�, except for
LiH, where the CCD method is used with a basis set of a quality
better than sextuple-	 �46�. All experimental values are taken from
Ref. �29�, except for GeH which is from Ref. �36�.

aexpt 
aDMC 
aPBE 
aMP2 
aCC

H2 0.741 0.0002�1� 0.010 −0.0040 0.0016

LiH 1.5957 0.0038�8� 0.0103 0.0030 0.0002

SiH 1.52 −0.0012�12� 0.0419 0.0002 0.0086

SiH4 1.480 −0.0073�6� 0.0277 −0.0026 0.0026

GeH 1.589 0.0111�14� 0.0149

TABLE IX. Harmonic vibrational frequencies �cm−1� obtained
from our pseudopotential DMC HFT force calculations at the H
atoms using the FPLA scheme and various all-electron reference
methods. The calculated data are given as deviations from the ex-
perimental frequencies. The basis sets and references are the same
as in Table VIII, with the exception of the PBE frequencies, which
are obtained with the cc-pVTZ basis, and are obtained from Ref.
�29�.

�expt 
�DMC 
�PBE 
�MP2 
�CC

H2 4401 33�35� −84 125 9

LiH 1406 −18�24� −32 35 −2

SiH 2042 −8�25� 87 51 −10

SiH4 2187 73�33� −27 109 64

GeH 1908±35 30�25� −10
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good results without them, we conclude that they are small in
our calculations.

We calculated bond lengths and harmonic vibrational fre-
quencies from the HFT forces for five small molecules, using
single-determinant Slater-Jastrow trial wave functions and
VMC and DMC methods. The DMC HFT forces were cal-
culated using future walking pure estimates. We investigated
both the FPLA and SPLA schemes for the nonlocal pseudo-
potential operator and have obtained similar results with
them. The equilibrium bond lengths for five small molecules
obtained from the force and energy calculations at the DMC
level differ by less than 0.003 Å for the forces calculated on
the H atoms, and by less than 0.007 Å for the forces on the
heavier atoms. The harmonic vibrational frequencies ob-
tained from the DMC forces are in very good agreement with
experiment.

Our expressions for the nonlocal forces can be used
straightforwardly in systems with periodic boundary condi-
tions. They can also be used in conjunction with other meth-
ods for improving DMC forces, such as schemes to reduce

the variance of the HFT estimator �15,16�, adding Pulay
terms �6�, or using better trial wave function forms.
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APPENDIX: EXPRESSIONS FOR NONLOCAL FORCES

Here we give the expressions for the nonlocal contribu-
tions to the Hellmann-Feynman forces for the first four an-
gular momenta l=0,1 ,2 ,3. These expressions give the x
components of the HFT forces; the other components are
obtained by replacing x by y or z. � denotes a dummy vari-
able for an electron position, uk is a unit vector in the direc-
tion of the kth point of the nonlocal integration grid �see Fig.
1�, and ex is the unit vector in the x direction.
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